Uji Kompetensi 10
Halaman 302
A. Pilihan Ganda (PG)
Bab 10 (Peluang)
Uji Kompetensi 10 Matematika Kelas 8 Halaman 302 (Peluang)
Uji Kompetensi 10 Matematika Halaman 302 Kelas 8 (Peluang)
Kelas 8 SMP/MTS
Semester 2 K13
Halaman 302
A. Pilihan Ganda (PG)
Bab 10 (Peluang)
Uji Kompetensi 10 Matematika Kelas 8 Halaman 302 (Peluang)
Uji Kompetensi 10 Matematika Halaman 302 Kelas 8 (Peluang)
Kelas 8 SMP/MTS
Semester 2 K13
A. Pilihan Ganda
1. Suatu koin dilempar sebanyak 100 kali. Jika mata koin Angka muncul 40 kali, tentukan peluang empirik kemunculan mata angka tersebut.
A. 40/60 C. 2/5
B. 60/100 D. 1/2
Penyelesaian:
2. Sebuah koin dilempar sebanyak 100 kali. Jika mata koin Angka muncul 48 kali, maka peluang empirik kemunculan mata koin bukan Angka ialah ....
a.48/52. c.1/6
b.31/50. d.1/2
Penyelesaian:
3. Sebuah koin dilempar sebanyak n kali. Jika peluang empirik muncul mata koin Angka ialah a kali, maka peluang empirik muncul mata koin selain Angka ialah ....
a.a/n. c.1-a/n
b.1 - a/n d. a/n - 1.
Penyelesaian:
4. Berikut ini tabel yang menyatakan hasil percobaan penggelindingan sebuah dadu.
Mata dadu Frekuensi (kali)
1 ?
2 5
3 4
Mata dadu Frekuensi (kali)
4 4
5 3
6 5
Jika peluang empirik kemunculan mata dadu “1” ialah 3/24 , maka percobaan penggelindingan dadu tersebut dilakukan sebanyak ... kali.
A. 24 C. 26
B. 25 D. 27
Penyelesaian:
Penyelesaian:
A.9/54
B.45/50
C.5/6
D.5/9
Penyelesaian:
Penyelesaian:
A. 1/6
B.6/8
C.8/36
D.11/36
9. Pada tabel di samping disajikan data hasil percobaan pengundian dadu bermata enam. Setelah dilakukan pengundian didapat data sebagai berikut. Jika dilakukan pelemparan sebanyak 18 kali lagi, taksiran terbaik muncul mata dadu 2 menjadi sebanyak ....
A. 7 kali C. 12 kali
B. 9 kali D. 24 kali
Penyelesaian:
Penyelesaian:
11. Seorang melaksanakan pengundian dengan menggelindingkan 2 dadu. Peluang teoretik muncul mata dadu kembar dalam pengundian tersebut adalah ....
Penyelesaian:
Penyelesaian:
13. Seorang melaksanakan pengundian dengan menggelindingkan dua dadu. Peluang teoretik muncul mata dadu berjumlah 8 dalam pengundian tersebut ialah ....
Penyelesaian:
Penyelesaian:
A. Biru C. Oranye
B. Ungu D. Merah
Penyelesaian:
A. 450 C. 540
B. 500 D. 600
Penyelesaian:
17. Di suatu kelas 8 terdapat 30 siswa. Jika dilakukan suatu pemilihan secara acak, peluang terpilih seorang siswa dengan usia kurang dari 13 tahun ialah 1/5 . Banyak siswa pada kelas tersebut yang berusia 13 tahun atau lebih ialah ... siswa.
A. 23 C. 25
B. 24 D. 26
Penyelesaian:
18. Berikut ini terdapat 11 koin yang bertuliskan bilangan-bilangan. Dedi mengambil suatu koin tanpa melihat. Berapakah peluang Dedi mendapatkan koin yeng bertuliskan bilangan kelipatan 3?
Penyelesaian:
19. Empat pemain sepak bola melaksanakan latihan tendangan penalti. Hasil latihan tersebut disajikan pada tabel berikut. Pemain yang memiliki peluang terbesar untuk sukses dalam melakukan tendangan penalti ialah ….
A. Arif C. Candra
B. Bambang D. Dedi
Penyelesaian:
A. 14 C. 48
B. 18 D. 58
Penyelesaian:
Jawaban Esai Uji Kompetensi 10 Halaman 308 Matematika Kelas 8 (Peluang)
Sumber http://www.bastechinfo.com1. Suatu koin dilempar sebanyak 100 kali. Jika mata koin Angka muncul 40 kali, tentukan peluang empirik kemunculan mata angka tersebut.
A. 40/60 C. 2/5
B. 60/100 D. 1/2
Penyelesaian:
Untuk Melihat Langkah Penyelesaiannya (Cara-caranya) Silahkan klik DISINI
2. Sebuah koin dilempar sebanyak 100 kali. Jika mata koin Angka muncul 48 kali, maka peluang empirik kemunculan mata koin bukan Angka ialah ....
a.48/52. c.1/6
b.31/50. d.1/2
Penyelesaian:
Untuk Melihat Langkah Penyelesaiannya (Cara-caranya) Silahkan klik DISINI
3. Sebuah koin dilempar sebanyak n kali. Jika peluang empirik muncul mata koin Angka ialah a kali, maka peluang empirik muncul mata koin selain Angka ialah ....
a.a/n. c.1-a/n
b.1 - a/n d. a/n - 1.
Penyelesaian:
Untuk Melihat Langkah Penyelesaiannya (Cara-caranya) Silahkan klik DISINI
4. Berikut ini tabel yang menyatakan hasil percobaan penggelindingan sebuah dadu.
Mata dadu Frekuensi (kali)
1 ?
2 5
3 4
Mata dadu Frekuensi (kali)
4 4
5 3
6 5
Jika peluang empirik kemunculan mata dadu “1” ialah 3/24 , maka percobaan penggelindingan dadu tersebut dilakukan sebanyak ... kali.
A. 24 C. 26
B. 25 D. 27
Penyelesaian:
Diketahui:5. Berikut ini tabel yang menyatakan hasil percobaan penggelindingan sebuah dadu. Jika percobaan tersebut dilakukan sebanyak 40 kali, maka banyak peluang empirik kemunculan mata dadu “2” ialah ....
Tabel pada gambar soal
Ditanyakan:
Peluang empirik
Jawab:
Ruang sampel
n(S) = a + 5 + 4 + 4 + 3 + 5
⇔ n(S) = 21 + a
Peluang empirik
P(1) =
⇔ P(1) =
⇔ =
⇔ 3.(21 + a) = 24.a
⇔ 21 + a = 8a
⇔ 8a - a = 21
⇔ 7a = 21
⇔ a =
⇔ a = 3
n(S) = 3 + 5 + 4 + 4 + 3 + 5 = 24
Jadi, percobaan penggelindingan dadu tersebut dilakukan sebanyak 24 kali.
Penyelesaian:
Diketahui:6. Berikut ini tabel yang menyatakan hasil percobaan penggelindingan sebuah dadu sebanyak sekian kali. Jika peluang empirik kemunculan mata dadu “5” ialah 1/6 , maka peluang empirik mata dadu “selain 5” dalam percobaan tersebut ialah ....
Tabel pada lampiran.
Suatu percobaan menggelindingkan sebuah dadu sebanyak 40 kali.
Ditanyakan:
Peluang empirik bencana muncul mata dadu 2
Jawab:
Banyaknya ruang sampel S adalah
n(S) = 40
Banyaknya atau frekuensi bencana muncul mata dadu 2 adalahn(2) = a
Sehingga
n(S) = n(1) + n(2) + n(3) + n(4) + n(5) + n(6)
⇔ 40 = 6 + a + 7 + 6 + 8 + 9
⇔ 40 = 36 + a
⇔ a = 40 - 36
⇔ a = 4
Peluang empirik bencana muncul mata dadu 2 adalah
P(2) =
⇔ P(A) =
⇔ P(A) =
Jadi, peluang empirik bencana muncul mata dadu 2 dari suatu percobaan menggelindingkan sebuah dadu sebanyak 40 kali adalah
Jawaban yang benar: tidak ada.
A.9/54
B.45/50
C.5/6
D.5/9
Penyelesaian:
7. Berikut ini tabel yang menyatakan hasil percobaan penggelindingan sebuah dadu sebanyak sekian kali. Jika peluang empirik kemunculan mata dadu “1” ialah 1/6 , banyak kemunculan mata dadu “selain 2” dalam percobaan tersebut adalah ....
Sumber Gambar: https://brainly.co.id/tugas/15709963
Penyelesaian:
8. Pada tabel berikut disajikan data hasil percobaan pengundian dadu bermata enam. Setelah dilakukan pengundian didapat data seperti tabel di samping. Dari data tersebut, peluang empirik muncul mata dadu 2 ialah ....
Sumber : https://brainly.co.id/tugas/15223999
A. 1/6
B.6/8
C.8/36
D.11/36
Untuk Melihat Langkah Penyelesaiannya (Cara-caranya) Silahkan klik DISINI
9. Pada tabel di samping disajikan data hasil percobaan pengundian dadu bermata enam. Setelah dilakukan pengundian didapat data sebagai berikut. Jika dilakukan pelemparan sebanyak 18 kali lagi, taksiran terbaik muncul mata dadu 2 menjadi sebanyak ....
A. 7 kali C. 12 kali
B. 9 kali D. 24 kali
Penyelesaian:
Diketahui,10. Sebuah kantong berisi 5 kelereng merah, 6 kelereng kuning, dan 9 kelereng hijau. Sebuah kelereng diambil dari kantong tersebu. Peluang terambil kelereng kuning ialah ....
Ada 6 mata dadu dengan dilempar sebanyak 36 kali.Mata dadu 2 muncul sebanyak 6 kali dalam 36 kali lemparan.Peluang muncul mata dadu 2 ialah 1/6. Peluang ini cocok dengan peluang muncul mata dadu kalau dihitung dengan rumus:
Peluang = 1 : jumlah mata
Peluang = 1/6.
Jika dilakukan 18 kali lemparan lagi, berapa peluang muncul mata dadu 2?
Jawab:
Peluangnya sanggup dicari dengan membandingkan dengan data sebelumnya, selain dengan mencari dengan rumus langsung.
6 kali muncul : 36 kali lemparan = A kali muncul : 18 kali lemparan
A = 6 x 18 / 36 = 3 kali muncul
Nah kenapa 3 kali muncul tidak terdapat pada pilihan ganda? Jika kita simak secara teliti, soal diatas, muncul kata "taksiran menjadi sebanyak" dimana sanggup berarti jumlah total dari semuanya.
Jadi totalnya ialah 6 kali + 3 kali = 9 kali.
Penyelesaian soal ibarat ini sangat bergantung dari pemahaman kalian terhadap soal itu sendiri.
Jawabannya ialah B. 9 kali muncul
Penyelesaian:
Untuk Melihat Langkah Penyelesaiannya (Cara-caranya) Silahkan klik DISINI
11. Seorang melaksanakan pengundian dengan menggelindingkan 2 dadu. Peluang teoretik muncul mata dadu kembar dalam pengundian tersebut adalah ....
Penyelesaian:
dik :12. Seorang melaksanakan pengundian dengan menggelindingkan 1 dadu dan 1 koin logam. Peluang teoretik muncul mata dadu “1” dan mata koin “Angka” dalam pengundian tersebut ialah ....
Seseorang melaksanakan pengundian dengan menggelindingkan 2 dadu
dit :
peluang teoritik muncul mata dadu kembar atau sama?
jawab :
Terlebih dahulu kau harus tahu sampel dari dua mata dadu. Ruang sampel dari dua mata dadu.
S = {(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(1,6),(2,6),(3,6),(4,6),(5,6),(6,6)}
n(S) = 36
Peluang muncul mata dadu kembar.
Misalkan, A bencana muncul mata dadu kembar, sehingga A = {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},maka n(A) = 6
P(A) = n(A) / n(S)
P(A) = 6 / 36
P(A) = 1 / 6
Jadi, peluang teoritik muncul mata dadu kembar yaitu 1/6.
Penyelesaian:
Untuk Melihat Langkah Penyelesaiannya (Cara-caranya) Silahkan klik DISINI
13. Seorang melaksanakan pengundian dengan menggelindingkan dua dadu. Peluang teoretik muncul mata dadu berjumlah 8 dalam pengundian tersebut ialah ....
Penyelesaian:
⇒ Mata dadu terdiri dari angka 1 - 614. Seorang melaksanakan pengundian dengan menggelindingkan dua dadu. Peluang teoretik muncul mata dadu ganjil atau bukan prima dari salah satu mata dadu yang muncul dalam pengundian tersebut ialah ....
⇒ Frekuensi bencana pada pengundian 2 buah dadu ialah :
n(s) = 6² → angka 6 merupakan banyak mata dadu
→ pangkat 2 merupakan banyak dadu (dua buah dadu)
n(s) = 36
⇒ Frekuensi bencana munculnya mata dadu berjumlah 8 ialah :
(2,6) (3,5) (4,4) (5,3) dan (6,2) → banyaknya peluang bencana ada 5
n(A) = 5
Sehingga, Peluang teoritik munculnya mata dadu berjumlah 8 pada sekali pengundian dua buah dadu ialah sebagai berikut :
P(A) =
=
Jadi, Peluang kejadiannya adalah
Penyelesaian:
N(A)15. Gambar berikut ialah spinner dengan 24 bagian yang sama. Ketika seorang memutar panah spinner tersebut, panah sanggup berhenti di mana saja pada setiap bab Spinner tersebut. Spinner tersebut diwarnai 1/8 bab berwarna biru, 1/24 bab berwarna ungu, 1/2 bagian berwarna oranye, dan 1/3 bagian berwarna merah. Jika seseorang memutar panah spinner, kemungkinan terbesar panah akan berhenti pada bab berwarna ....
Ganjil = {1,3,5}
Bukan prima = {1,4,6}
Ruang sampel yang mustahil dimunculkan = {2,2}
Jadi n(A) = (6 x 6) - 1 = 36 - 1 = 35
n(S) = 6 x 6 = 36 Jadi peluang teorik :
P(A) = n(A)/n(S) = 35/36
A. Biru C. Oranye
B. Ungu D. Merah
Penyelesaian:
Untuk Melihat Langkah Penyelesaiannya (Cara-caranya) Silahkan klik DISINI16. Di Sekolah Sekolah Menengah Pertama Insan Mandiri terdapat 1.200 siswa (laki-laki dan perempuan). 100 sampel diambil secara acak dari siswa-siswa tersebut. Dari 100 siswa yang diambil, 45 siswa ialah laki-laki. Taksiran banyak siswa pria seluruhnya dalam sekolah tersebut ialah ... siswa.
A. 450 C. 540
B. 500 D. 600
Penyelesaian:
taksiran jumlah siswa laki laki seluruhnya dari sampel yang diperoleh yaitu:
(45/100) x 1200 = 540 siswa laki-laki
17. Di suatu kelas 8 terdapat 30 siswa. Jika dilakukan suatu pemilihan secara acak, peluang terpilih seorang siswa dengan usia kurang dari 13 tahun ialah 1/5 . Banyak siswa pada kelas tersebut yang berusia 13 tahun atau lebih ialah ... siswa.
A. 23 C. 25
B. 24 D. 26
Penyelesaian:
Misal jumlah siswa kurang dari 13 tahun = a
P(kurang dari 13) = 1/5
P(kurang dari 13) = a/30
Sehingga :
1/5 = a/30
a = 6
Jadi banyak siswa yang berusia 13 tahun atau lebih :
= 30 - 6
= 24 siswa
18. Berikut ini terdapat 11 koin yang bertuliskan bilangan-bilangan. Dedi mengambil suatu koin tanpa melihat. Berapakah peluang Dedi mendapatkan koin yeng bertuliskan bilangan kelipatan 3?
Penyelesaian:
Untuk Melihat Langkah Penyelesaiannya (Cara-caranya) Silahkan klik DISINI
19. Empat pemain sepak bola melaksanakan latihan tendangan penalti. Hasil latihan tersebut disajikan pada tabel berikut. Pemain yang memiliki peluang terbesar untuk sukses dalam melakukan tendangan penalti ialah ….
A. Arif C. Candra
B. Bambang D. Dedi
Penyelesaian:
Peluang seorang pemain untuk sukses dalam melaksanakan tendangan pinalti ialah :20. Empat pemain sepak bola melaksanakan latihan tendangan penalti. Hasil latihan tersebut disajikan pada tabel berikut. Jika Bambang melaksanakan tendangan penalti sebanyak 60 kali, berapa perkiraan banyaknya tendangan yang sukses?
P(A) = n(A)/n(S)
dengan
n(A) = Banyaknya tendangan pinalti yang sukses
n(S) = Banyaknya tendangan pinalti yang dilakukan
Peluang Arif melaksanakan tendangan finalti yang sukses ialah :
P(A) = n(A)/n(S)
P(A) = 10/12
P(A) = 5/6
P(A) = 0,83
Peluang Bambang melaksanakan tendangan finalti yang sukses ialah :
P(A) = n(A)/n(S)
P(A) = 8/10
P(A) = 4/5
P(A) = 0,80
Peluang Chandra melaksanakan tendangan finalti yang sukses ialah :
P(A) = n(A)/n(S)
P(A) = 15/20
P(A) = 3/4
P(A) = 0,75
Peluang Dede melaksanakan tendangan finalti yang sukses ialah :
P(A) = n(A)/n(S)
P(A) = 12/15
P(A) = 4/5
P(A) = 0,80
Jadi pemain yang memiliki peluang terbesar untuk sukses dalam melaksanakan tendangan pinalti adalah
ARIF
yaitu peluangnya sebesar 5/6 = 0,83
A. 14 C. 48
B. 18 D. 58
Penyelesaian:
Untuk Melihat Langkah Penyelesaiannya (Cara-caranya) Silahkan klik DISINIBaca Selanjutnya:
Jawaban Esai Uji Kompetensi 10 Halaman 308 Matematika Kelas 8 (Peluang)
Buat lebih berguna, kongsi: